Low-dose infusions of CD45RA depleted donor lymphocytes after TCR alpha/beta-depleted transplantation in patients with non-malignant disorders
Bone Marrow Transplantation (2019) 54:12 Abstract 0007

Infusion of memory T cell (CD45RA-Depleted) DLI improves CMV-specific immune response early after ABT cell-depleted HSCT: First results of a prospective randomized trial
Bone Marrow Transplantation (2019) 54:40 Abstract 0046

NKG2D-CAR T cells as an immunotherapy against pediatric hematological malignancies
Bone Marrow Transplantation (2019) 54:178 Abstract P056

Automated manufacturing of clinical grade NKG2DCAR memory T cells using clinimacs prodigy
Bone Marrow Transplantation (2019) 54:184 Abstract P064

Safety and outcome of high-dose donor CD45RO+ memory T-cells infusion after allogeneic transplantation
Bone Marrow Transplantation (2019) 54:185 Abstract P065

Automated generation of CD45RA depleted donor lymphocyte infusion (DLI) with the clinimacs prodigy® CD45RA system
Bone Marrow Transplantation (2019) 54:194 Abstract P080

Excellent outcome using 'NKTM' enriched hematopoietic stem cell transplants for patients with inborn errors of immunity
Tan PL, Yeap F, Chan C, Francisco K, Villegas M, Yeoh A
Bone Marrow Transplantation (2019) 54:395 Abstract P390

Delayed immune reconstitution and subsequent infections can be improved with a viral prophylaxis in a pediatric hospital post haploidentical HSCT with clinimacs device: Peruvian experience
Bone Marrow Transplantation (2019) 54:450 Abstract P476
Sequential infusion of Tcrαβ- and CD45RA-depleted haploidentical progenitor cells is safe and allows for rapid immune reconstitution in pediatric patients with recurrent hematological malignancies

60th Annual Meeting of American Society of Hematology (2018)
Blood (2018) 132:4574

Depletion of CD45RA+ naive t cells for haploidentical stem cell transplantation

Gruner Melanie, Theresa Krastel, Olga Zimmermann, Katzki Verena, Lisa-Marie Pfeffermann, Jan Sörensen, Halvard Bonig, Claudia Cappel, Thomas Klingebiel, Peter Bader, Sabine Huenecke
Bone Marrow Transplantation (2019) 54:595
Abstract P712

αβ T cell-depleted haploidentical hematopoietic stem cell transplantation without antithymocyte globulin in children with chemorefractory acute myelogenous leukemia

Bone Marrow Transplant (2019) 25:e179-e182

Phase I, dose escalation study of naive T-cell-depleted donor lymphocyte infusion following allogeneic stem cell transplantation

TCT 2019 - Transplantation & Cellular Therapy Meetings of ASBMT and CIBMTR
Bone Marrow Transplant. (2019) 25:S252-S253

CD45 RA Depletion as an allogeneic hematopoietic transplantation platform in children from HLA-identical donors

Diaz MA, Molina B, Sebastian E, Galvez E, Zubricaray J, Sevilla J, Gonzalez Vicent M.
TCT 2019 - Transplantation & Cellular Therapy Meetings of ASBMT and CIBMTR
Bone Marrow Transplant. (2019) 25: S205-S206
Haploidentical hematopoietic stem cell transplantation with selection of CD34+ and CD45RA+ cells depletion as novel approach for severe aplastic anaemia in pediatric
44th Annual Meeting of European Society for Blood and Marrow Transplantation (2018)
Bone Marrow Transplant. (2018) Abstract P069 -- https://doi.org/10.1038/s41409-018-0354-7

Infusion of donor-derived CD81 memory T cells for relapse following allogeneic hematopoietic cell transplantation
Blood advances (2018), 2:681-690

Generation of alloreactivity-reduced donor lymphocyte products retaining memory function by fully automatic depletion of CD45RA-positive cells
Müller N, Landwehr K, Langeveld K, Stenzel J, Puowels W, van der Hoorn MAWG, Seifried E, Bonig H

Selective T-cell depletion targeting CD45RA reduces viremia and enhances early T-cell recovery compared with CD3-targeted T-cell Depletion

Low-dose donor memory T-cell infusion after TCR alpha/beta depleted unrelated and haploidentical transplantation: results of a pilot trial
Bone Marrow Transplant. (2017) 53:264-273

Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse
Dossa RG, Cunningham T, Sommermeyer D, Medina-Rodriguez I, Biernacki MA, Foster K, Bleakley M

Rapid immune reconstitution post CD45RA depleted HSCT leads to better engraftement, reduced risk of invasive viral infections and superior graft versus leukemia effect.
Chetan Anil Dhamne, Frances Yeap, Teck Guan Soh, Mariflor Villegas, Miriam Kimpo, Anand Kumar Krishnappa, Krista Lea Francisco, Allen Yeoh, Quah Thuan Chong, Tan Poh Lin
43rd Annual Meeting of European Society for Blood and Marrow Transplantation (2017), Abstract #B126

Safety of dose escalating haploidentical memory T cell donor lymphocyte infusions after 45RA-depleted haplo-stem cell transplantation
43rd Annual Meeting of European Society for Blood and Marrow Transplantation (2017), Abstract #B409

Clinical outcome, safety and rapid immunologic reconstitution in C45RA-depleted haploidential transplantation in paediatric acute leukemia treatment
43rd Annual Meeting of European Society for Blood and Marrow Transplantation (2017), Abstract #B137

NKG2D-CAR REDIRECTED CD45RA: MEMORY T CELLS TARGET PEDIATRIC ACUTE LEUKEMIA
43rd Annual Meeting of European Society for Blood and Marrow Transplantation (2017), Abstract #B393

Naïve T Cell Depletion of PBSC Grafts Results in Very Low Rates of Chronic Gvhd and High Survival
Bleakley M, Gooley TA, Hilzinger B, Riddell SR, Shlomchik WD
58th Annual Meeting of American Society of Hematology (2016), Abstract #668
Safety, tolerability and rapid immunologic reconstitution in CD45RA depleted haploidentical hematopoietic stem cell transplantation
42nd Annual Meeting of European Society for Blood and Marrow Transplantation (2016), Abstract #P281

Low-dose infusions of CD45RA-depleted donor lymphocytes to improve immune reconstitution after TCR alpha/beta-depleted transplantation – results of a pilot trial
42nd Annual Meeting of European Society for Blood and Marrow Transplantation (2016), Abstract #O167

Novel treatment of severe combined immunodeficiency utilizing ex-vivo T-cell depleted haploidentical hematopoietic stem cell transplantation and CD45RA+ depleted donor lymphocyte infusions
Brodzsik N, Turkiewicz D, Toporski J, Truedsson L, Dykes J
Orphanet Journal of Rare Diseases (2016) 11:5

Reduction in CMV and Adenovirus Viremia after Haploidentical Donor Transplantation Utilizing CD45RA Depletion and NK Cell Infusion
57th Annual Meeting of American Society of Hematology (2015), Abstract #624

Rapid memory T-cell reconstitution recapitulating CD45RA-depleted haploidentical transplant graft content in patients with hematologic malignancies

Haploidentical Stem Cell Transplantation Augmented by CD45RA Negative Lymphocytes Provides Rapid Engraftment and Excellent Tolerability
Shook DR, Triplet BM, Eldridge PW, Kang G, Srinivasan A, Leung W

Outcomes of acute leukemia patients transplanted with naive T-cell–depleted stem cell grafts

CD45RA depleted donor lymphocyte infusions for antiviral boost following ex-vivo T-cell depleted haploidentical hematopoietic stem cell transplantation

A pilot trial of low-dose infusions of CD45RA depleted donor lymphocytes to improve immune reconstitution after TCR alpha/beta depleted transplantation
Bone Marrow Transplant. (2015) 50(S1): S314, abstract P385

A Single Center Experience of Haploidentical Stem Cell Transplants in Pediatric Leukemia

CD45RA depletion in HLA-mismatched allogeneic hematopoietic stem cell transplantation for primary combined immunodeficiency: A preliminary study

Effective Depletion of CD45RA+ Naïve T Cells Using the CliniMACS® System to Produce Donor Lymphocyte Infusions for Antiviral Boost Following Haploidentical Transplantation
Engineering Human Peripheral Blood Stem Cell Grafts That Are Depleted of Naïve T Cells and Retain Functional Pathogen-Specific Memory T cells

Bleakley M, Heimfeld S, Jones L, Turtle C, Riddell S, Shlomchik W

Depletion of naïve T cells using clinical grade magnetic CD45RA beads: a new approach for GVHD prophylaxis


Depletion of Naïve T Cells From Peripheral Blood Stem Cell Grafts for Gvhd Prevention

Bleakley M, Heimfeld S; Jones L; Chaney C, Turtle C; Gooley T, Seropian S, Nishihori T, Riddell S; Shlomchik W

Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale.


The CliniMACS® System components, including Reagents, Tubing Sets, Instruments, and PBS/EDTA Buffer, are designed, manufactured and tested under a quality system certified to ISO 13485.

In the EU, the CliniMACS System components are available as CE-marked medical devices for their respective intended use, unless otherwise stated. The CliniMACS Reagents and Biotin Conjugates are intended for in vitro use only and are not designated for therapeutic use or direct infusion into patients. The CliniMACS Reagents in combination with the CliniMACS System are intended to separate human cells. Miltenyi Biotec as the manufacturer of the CliniMACS System does not give any recommendations regarding the use of separated cells for therapeutic purposes and does not make any claims regarding a clinical benefit. For the manufacturing and use of target cells in humans the national legislation and regulations - e.g., for the EU the Directive 2004/23/EC ("human tissues and cells"), or the Directive 2002/98/EC ("human blood and blood components") - must be followed. Thus, any clinical application of the target cells is exclusively within the responsibility of the user of a CliniMACS System.

In the US, the CliniMACS CD34 Reagent System, including the CliniMACS Plus Instrument, CliniMACS CD34 Reagent, CliniMACS Tubing Sets TS and LS, and the CliniMACS PBS/EDTA Buffer, is FDA approved as a Humanitarian Use Device (HUD), authorized by U.S. Federal law for use in the treatment of patients with acute myeloid leukemia (AML) in first complete remission. The effectiveness of the device for this indication has not been demonstrated. Other products of the CliniMACS Product Line are available for use only under an approved Investigational New Drug (IND) application, Investigational Device Exemption (IDE) or FDA approval.

CliniMACS GMP MicroBeads are for research use and ex vivo cell processing only.

CliniMACS MicroBeads are for research use only and not for human therapeutic or diagnostic use.

CliniMACS, CliniMACS Prodigy, MACS, and the MACS logo are registered trademarks or trademarks of Miltenyi Biotec GmbH and/or its affiliates in various countries worldwide. Copyright © 2019 Miltenyi Biotec GmbH and/or its affiliates. All rights reserved.