Contents
1. Description
 1.1 Principle of the MACS® Separation
 1.2 Background information
 1.3 Applications
 1.4 Reagent and instrument requirements
2. Protocol
 2.1 Sample preparation
 2.2 Magnetic labeling
 2.3 Magnetic separation
3. Example of a separation using the CD133 MicroBead Kit – Tumor Tissue
4. References

Warnings
Reagents contain sodium azide. Under acidic conditions sodium azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. These precautions are recommended to avoid deposits in plumbing where explosive conditions may develop.

1. Description
This product is for research use only.

Components
2 mL CD133 MicroBeads – Tumor Tissue, human:
MicroBeads conjugated to monoclonal anti-human CD133 antibodies (isotype: mouse IgG1, clone AC133).
2 mL FcR Blocking Reagent, human:
Human IgG.

Capacity
For 10⁹ total cells, up to 100 separations.

Product format
CD133 MicroBeads – Tumor Tissue are supplied in buffer containing stabilizer and 0.05% sodium azide.

Storage
Store protected from light at 2–8 °C. Do not freeze. The expiration date is indicated on the vial label.

1.1 Principle of the MACS® Separation
First, the CD133⁺ cells are magnetically labeled with CD133 MicroBeads – Tumor Tissue. Then, the cell suspension is loaded onto a MACS® Column, which is placed in the magnetic field of a MACS Separator. The magnetically labeled CD133⁺ cells are retained within the column. The unlabeled cells run through; this cell fraction is thus depleted of CD133⁺ cells. After removing the column from the magnetic field, the magnetically retained CD133⁺ cells can be eluted as the positively selected cell fraction. To increase the purity, the positively selected cell fraction containing the CD133⁺ cells must be separated over a second column.

1.2 Background information
The CD133 molecule is a 5-transmembrane cell surface antigen with a molecular weight of 117 kDa.¹ The CD133/1 (clone AC133) antibody recognizes an epitope of the CD133 antigen²–⁵. This epitope is called epitope 1 to distinguish it from another epitope (epitope 2) recognized by the clone 293C3. CD133 has been found to be expressed on hematopoietic stem cells¹,³, circulating endothelial progenitor cells⁴,⁶, and fetal neural stem cells⁴,⁷ as well as on other tissue-specific stem cells, such as renal⁸, prostate⁹, and corneal¹⁰ stem cells. In addition, CD133 was identified to be specifically expressed on cancer stem cells in multiple tumor entities like glioblastoma, lung cancer, prostate cancer, pancreatic cancer, and renal cancer¹¹. In contrast to hematopoietic systems, where the epitopes of clones AC133 and 293C3 are co-expressed, only the epitope of clone AC133 is expressed in most of the analyzed tumor entities. Therefore, it is crucial to use only this clone if cells have to be identified or isolated. Furthermore, it was shown that the AC133 epitope but not the entire CD133 protein expression is lost upon CSC differentiation¹².

1.3 Applications
● Isolation or depletion of CD133⁺ cells from non-hematopoietic origins (e.g. tumor tissue).

1.4 Reagent and instrument requirements
● MACS Columns and MACS Separators: CD133⁺ cells can be enriched by using MS, or LS Columns or depleted with the use of LD Columns. For cells showing low expression levels of CD133, the use of an LS Column is recommended for optimal recovery during enrichment. Cells that strongly express the CD133 antigen can also be depleted using MS or LS Columns. Positive selection or depletion can also be performed by using the autoMACS® Pro or the autoMACS Separator.

<table>
<thead>
<tr>
<th>Column</th>
<th>Max. number of labeled cells</th>
<th>Max. number of total cells</th>
<th>Separator</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>10⁷</td>
<td>2×10⁷</td>
<td>MiniMACS, OctoMACS, VarioMACS, SuperMACS II</td>
</tr>
<tr>
<td>LS</td>
<td>2×10⁷</td>
<td>4×10⁷</td>
<td>MidiMACS, QuadroMACS, VarioMACS, SuperMACS II</td>
</tr>
<tr>
<td>LD</td>
<td>1.5×10⁷</td>
<td>3×10⁷</td>
<td>MidiMACS, QuadroMACS, VarioMACS, SuperMACS II</td>
</tr>
<tr>
<td>autoMACS</td>
<td>5×10⁷</td>
<td>10⁸</td>
<td>autoMACS Pro, autoMACS</td>
</tr>
</tbody>
</table>

▲ Note: Column adapters are required to insert certain columns into the VarioMACS® or SuperMACS™ II Separators. For details refer to the respective MACS Separator data sheet.
As the epitopes of clone 293C3 and other clones are not co-expressed with the epitope of clone AC133 on the majority of tumor tissues, it is also not possible to use those for the evaluation of your cell separation. Due to low expression level on most cells it is also not possible to use the low expression level on most cells.

When working with solid tissue, prepare a single-cell suspension using manual methods or the gentleMACS Dissociator and tissue dissociation kits.

For details refer to the protocols section at www.miltenyibiotech.com/protocols.

- Dead cells may bind non-specifically to MACS MicroBeads. To remove dead cells, we recommend using density gradient centrifugation or the Dead Cell Removal Kit (# 130-090-101).

As the epitopes of clone 293C3 and other clones are not co-expressed with the epitope of clone AC133 on the majority of tumor tissues, do not use those for the evaluation of your cell separation. Due to the low expression level on most cells it is not possible to use AC133 fluorochrome conjugates for fluorescent staining of already MicroBead-labeled cells. For evaluation of MACS Separations by flow cytometry or fluorescence microscopy, use the Labeling Check Reagent conjugated to, e.g., PE (# 130-095-228). Labeling Check Reagent guarantees optimal flow cytometric analysis of isolated CD133+ cells.

Volumes for magnetic labeling given below are for up to 10^7 total cells. When working with fewer than 10^7 cells, use the same volumes as indicated. When working with higher cell numbers, scale up all reagent volumes and total volumes accordingly (e.g. for 2×10^7 total cells, use twice the volume of all indicated reagent volumes and total volumes).

For optimal performance it is important to obtain a single-cell suspension before magnetic labeling. Pass cells through 30 µm nylon mesh (Pre-Separation Filters, 30 µm # 130-041-407) to remove cell clumps which may clog the column. Moisten filter with buffer before use.

The recommended incubation temperature is 2–8 °C. Higher temperatures and/or longer incubation times may lead to non-specific cell labeling. Working on ice may require increased incubation times.

1. Determine cell number.
2. Centrifuge cell suspension at 300×g for 10 minutes. Aspirate supernatant completely.
3. Resuspend cell pellet in 60 µL of buffer per 10^7 total cells.
4. Add 20 µL of FcR Blocking Reagent per 10^7 total cells.
5. Add 20 µL of CD133 MicroBeads – Tumor Tissue per 10^7 total cells.
6. Mix well and incubate for 15 minutes in the refrigerator (2–8 °C) under slow, continuous rotation using the MACSmix Tube Rotator.
7. Wash cells by adding 1–2 mL of buffer per 10^7 cells and centrifuge at 300×g for 10 minutes. Aspirate supernatant completely.
8. (Optional) Add staining antibodies, e.g., 10 µL of Labeling Check Reagent-PE (# 130-095-228), mix well, and incubate for 5 minutes in the dark in the refrigerator (2–8 °C)

- Note: Labeling Check Reagent guarantees optimal flow cytometric analysis of isolated CD133+ cells.

9. (Optional) Wash cells by adding 1–2 mL of buffer per 10^7 cells and centrifuge at 300×g for 10 minutes. Aspirate supernatant completely.
10. Resuspend up to 10^7 cells in 500 µL of buffer.

- Note: For higher cell numbers, scale up buffer volume accordingly.

11. Proceed to magnetic separation (2.3).

2.3 Magnetic separation

- Choose an appropriate MACS Column and MACS Separator according to the number of total cells and the number of CD133+ cells. For details refer to the table in section 1.4.

- Always wait until the column reservoir is empty before proceeding to the next step.

Magnetic separation with MS or LS Columns

1. Place column in the magnetic field of a suitable MACS Separator. For details refer to the respective MACS Column data sheet.
2. Prepare column by rinsing with the appropriate amount of buffer:
 - MS: 500 µL
 - LS: 3 mL

Unless otherwise specifically indicated, all Miltenyi Biotec products and services are for research use only and not for diagnostic or therapeutic use.
3. Apply cell suspension onto the column. Collect flow-through containing unlabeled cells.

4. Wash column with the appropriate amount of buffer. Collect unlabeled cells that pass through and combine with the flow-through from step 3.

 MS: 3×500 µL LS: 3×3 mL
 ▲ Note: Perform washing steps by adding buffer aliquots only when the column reservoir is empty.

5. Remove column from the separator and place it on a suitable collection tube.
 ▲ Note: To perform a second column run, you may elute the cells directly from the first onto the second, equilibrated column instead of a collection tube.

6. Pipette the appropriate amount of buffer onto the column. Immediately flush out the magnetically labeled cells by firmly pushing the plunger into the column.
 MS: 1 mL LS: 5 mL

7. To increase purity of CD133⁺ cells, enrich the eluted fraction over a second MS or LS Column. Repeat the magnetic separation procedure as described in steps 1 to 6 by using a new column.

Depletion with LD Columns
1. Place LD Column in the magnetic field of a suitable MACS Separator. For details refer to the LD Column data sheet.
2. Prepare column by rinsing with 2 mL of buffer.
3. Apply cell suspension onto the column.
4. Collect unlabeled cells that pass through and wash column with 2×1 mL of buffer. Collect total flow-through; this is the unlabeled cell fraction. Perform washing steps by adding buffer two times. Only add new buffer when the column reservoir is empty.

Magnetic separation with the autoMACS® Pro Separator or the autoMACS® Separator
▲ Refer to the respective user manual for instructions on how to use the autoMACS® Pro Separator or the autoMACS Separator.
▲ Buffers used for operating the autoMACS Pro Separator or the autoMACS Separator should have a temperature of ≥10 °C.
▲ Program choice depends on the isolation strategy, the strength of magnetic labeling, and the frequency of magnetically labeled cells. For details refer to the section describing the cell separation programs in the respective user manual.

Magnetic separation with the autoMACS® Pro Separator
1. Prepare and prime the instrument.
2. Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube at the uptake port and the fraction collection tubes at port neg1 and port pos2.
3. For a standard separation choose one of the following programs:
 Positive selection: Posseld2
 Collect positive fraction from outlet port pos2.
 Depletion: Depletes
 Collect negative fraction from outlet port neg1.

3. Example of a separation using the CD133 MicroBead Kit – Tumor Tissue

CD133⁺ human retinoblastoma cells (WERI-Rb-1) were isolated from a mixture of U937 and WERI-Rb-1 cells using CD133 MicroBeads – Tumor Tissue, an MS Column, and an OctoMACS™ Separator. Cells were fluorescently stained with Labeling Check Reagent-PE (# 130-095-228) and CD44-APC (# 130-095-177) and analyzed by flow cytometry using the MACSQuant® Analyzer. Cell debris and dead cells were excluded from the analysis based on scatter signals and propidium iodide fluorescence.
4. References

Refer to www.miltenyibiotec.com for all data sheets and protocols. Miltenyi Biotec provides technical support worldwide. Visit www.miltenyibiotec.com/local to find your nearest Miltenyi Biotec contact.

Legal notices

Limited product warranty

Miltenyi Biotec B.V. & Co. KG and/or its affiliate(s) warrant this product to be free from material defects in workmanship and materials and to conform substantially with Miltenyi Biotec’s published specifications for the product at the time of order, under normal use and conditions in accordance with its applicable documentation, for a period beginning on the date of delivery of the product by Miltenyi Biotec or its authorized distributor and ending on the expiration date of the product’s applicable shelf life stated on the product label, packaging or documentation (as applicable) or, in the absence thereof, ONE (1) YEAR from date of delivery (“Product Warranty”). Miltenyi Biotec’s Product Warranty is provided subject to the warranty terms as set forth in Miltenyi Biotec’s General Terms and Conditions for the Sale of Products and Services available on Miltenyi Biotec’s website at www.miltenyibiotec.com, as in effect at the time of order (“Product Warranty”). Additional terms may apply. BY USE OF THIS PRODUCT, THE CUSTOMER AGREES TO BE BOUND BY THESE TERMS.

The Customer is solely responsible for determining if a product is suitable for Customer’s particular purpose and application methods.

Technical information

The technical information, data, protocols, and other statements provided by Miltenyi Biotec in this document are based on information, tests, or experience which Miltenyi Biotec believes to be reliable, but the accuracy or completeness of such information is not guaranteed. Such technical information and data are intended for persons with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information. Miltenyi Biotec shall not be liable for any technical or editorial errors or omissions contained herein. All information and specifications are subject to change without prior notice. Please contact Miltenyi Biotec Technical Support or visit www.miltenyibiotec.com for the most up-to-date information on Miltenyi Biotec products.

Licenses

This product and/or its use may be covered by one or more pending or issued patents and/or may have certain limitations. Certain uses may be excluded by separate terms and conditions. Please contact your local Miltenyi Biotec representative or visit Miltenyi Biotec’s website at www.miltenyibiotec.com for more information. The purchase of this product conveys to the customer the non-transferable right to use the purchased amount of the product in research conducted by the customer (whether the customer is an academic or for-profit entity). This product may not be further sold. Additional terms and conditions (including the terms of a Limited Use Label License) may apply. CUSTOMER’S USE OF THIS PRODUCT MAY REQUIRE ADDITIONAL LICENSES DEPENDING ON THE SPECIFIC APPLICATION. THE CUSTOMER IS SOLELY RESPONSIBLE FOR DETERMINING FOR ITSELF WHETHER IT HAS ALL APPROPRIATE LICENSES IN PLACE. Miltenyi Biotec provides no warranty that customer’s use of this product does not and will not infringe intellectual property rights owned by a third party. BY USE OF THIS PRODUCT, THE CUSTOMER AGREES TO BE BOUND BY THESE TERMS.

Trademarks

autoMACS, gentleMACS, MACS, MACSmix, MACSQuant, MidiMACS, the Miltenyi Biotec logo, MiniMACS, OctoMACS, QuadroMACS, SuperMACS, and VarioMACS are registered trademarks or trademarks of Miltenyi Biotec and/or its affiliates in various countries worldwide.

Copyright © 2020 Miltenyi Biotec and/or its affiliates. All rights reserved.