

Contents

- Description
 - 1.1 Principle of the MACS® Separation
 - 1.2 Background information
 - 1.3 Applications
 - 1.4 Reagent and instrument requirements
- Protocol
 - 2.1 Sample preparation
 - 2.2 Magnetic labeling
 - 2.3 Magnetic separation
- Example of a separation using the CD11b (Microglia) MicroBeads
- References

Warnings

Reagents contain sodium azide. Under acidic conditions sodium azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. These precautions are recommended to avoid deposits in plumbing where explosive conditions may develop.

1. Description

This product is for research use only.

1 mL CD11b (Microglia) MicroBeads, human Components

and mouse

or

100 µL CD11b (Microglia) MicroBeads,

human and mouse - small size:

MicroBeads conjugated to monoclonal antihuman/mouse CD11b (Mac-1α) antibodies

(isotype: rat IgG2b).

1 mL for 1×109 total cells, up to 100 separations Capacity

100 μ L for 1×10⁸ total cells, up to 10 separations.

Product format CD11b (Microglia) MicroBeads are supplied in

buffer containing stabilizer and 0.05% sodium

Storage Store protected from light at 2-8 °C. Do not

freeze. The expiration date is indicated on the

vial label.

1.1 Principle of the MACS® Separation

First, a single-cell suspension of human or mouse brain is prepared according to an appropriate protocol, such as our protocols for the dissociation of neural tissues with the Neural Tissue Dissociation Kits (P \leq 7) or the Adult Brain Disassociation Kit (P>7). The CD11b⁺ cells are magnetically labeled with CD11b (Microglia) MicroBeads.

CD11b (Microglia) **MicroBeads**

human and mouse

130-093-634 100 μL 130-093-636

The cell suspension is loaded onto a MACS® Column, which is placed in the magnetic field of a MACS Separator. The magnetically labeled CD11b⁺ cells are retained within the column. The unlabeled cells run through; this cell fraction is thus depleted of CD11b+ cells. After removing the column from the magnetic field, the magnetically retained CD11b⁺ cells can be eluted as the positively selected cell fraction. To increase the purity, the positively selected cell fraction containing the CD11b+ cells must be separated over a second column.

1.2 Background information

Microglia, often called brain macrophages, are the resident immune-effector cells in the central nervous system (CNS). In addition, activated microglia serve as the major antigen-presenting cells in the CNS. They are morphologically, immunophenotypically, and functionally related to cells of the monocyte/macrophage lineage. The most characteristic feature of microglial cells is their rapid activation in response to injury, inflammation, neurodegeneration, infection, and brain tumors. A paucity of microglial antigens has hindered microglial identification. However, CD11b has been widely used as marker for microglial identification and is also suitable for their immunomagnetic isolation from human and mouse brain tissue. CD11b (Microglia) MicroBeads have been optimized to isolate CD11b+ cells from single-cell suspensions of brain or brain tumor tissue.

1.3 Applications

page 1/4

Positive selection or depletion of CD11b⁺ cells from single-cell suspensions of human or mouse brain tissue.

1.4 Reagent and instrument requirements

- Buffer: Prepare a solution containing phosphate-buffered saline (PBS), pH 7.2, and 0.5% bovine serum albumin (BSA) by diluting MACS BSA Stock Solution (#130-091-376) 1:20 with PBS. Keep buffer cold (2-8 °C). Degas buffer before use, as air bubbles could block the column.
 - ▲ Note: BSA can be replaced by other proteins such as mouse/human serum albumin, mouse/human serum, or fetal bovine serum (FBS).
- MACS Columns and MACS Separators: CD11b+ cells can be enriched by using MS or LS Columns or depleted with the use of LD, CS, or D Columns. Cells which strongly express the CD11b antigen can also be depleted using MS or LS Columns. Positive selection or depletion can also be performed by using the autoMACS Pro Separator or the MultiMACS™ Cell24 Separator.

Column	Max. number of labeled cells	Max. number of total cells	Separator		
Positive selection					
MS	10 ⁷	2×10 ⁷	MiniMACS, OctoMACS		
LS	2×10 ⁷	4×10 ⁷	MidiMACS, QuadroMACS		

Depletion

Multi-24

 2×10^{7}

LD	1.5×10 ⁷	3×10 ⁷	MidiMACS, QuadroMACS		
Positive selection or depletion					
autoM <i>A</i>	ACS 5×10 ⁷	10 ⁸	autoMACS Pro		

MultiMACS Cell24

- 4×10^{7} (Optional) Neural Tissue Dissociation Kit (P) (# 130-092-628)
- (Optional) Neural Tissue Dissociation Kit (T) (# 130-093-231)
- (Optional) Brain Tumor Dissociation Kit (P) (# 130-095-942)
- (Optional) Brain Tumor Dissociation Kit (T) (# 130-095-939)
- (Optional) Adult Brain Dissociation Kit (# 130-107-677) for rodents older than P7.
- (Optional) Myelin Removal Beads II (# 130-096-733, # 130-096-433)
- gentleMACS™ Dissociator (# 130-093-235), (Optional) gentleMACS Octo Dissociator (# 130-095-937), or gentleMACS Octo Dissociator with Heaters (# 130-096-427) and C Tubes (# 130-093-237, # 130-096-334)
- (Optional) Fluorochrome-conjugated CD11b antibody for flow cytometric analysis, e.g., CD11b-FITC, CD11b-PE, or CD11b-APC. For more information about other fluorochrome conjugates refer to www.miltenyibiotec.com/antibodies.
- (Optional) Propidium Iodide Solution (#130-093-233) or 7-AAD for flow cytometric exclusion of dead cells.
- (Optional) MACS® SmartStrainers (70 µm) (# 130-098-462) or MACS SmartStrainers (30 µm) (# 130-098-458)
- (Optional) Pre-Separation Filters (70 µm) (# 130-095-823)

2. Protocol

2.1 Sample preparation

Prepare a single-cell suspension from your tissue of interest by using the Neural Tissue Dissociation Kit (P) (#130-092-628) or (T) (# 130-093-231) (p≤7) or the Adult Brain Dissociation Kit (# 130-107-677) (p>7), or the Brain Tumor Dissociation Kit (P) (# 130-095-942) or (T) (# 130-095-939), which can also be used in combination with the gentleMACS Dissociators. For details please refer to the respective data sheets.

2.2 Magnetic labeling

- ▲ Work fast, keep cells cold, and use pre-cooled solutions. This will prevent capping of antibodies on the cell surface and non-specific cell labeling.
- ▲ Volumes for magnetic labeling given below are for up to 10⁷ total cells. When working with fewer than 10⁷ cells, use the same volumes as indicated. When working with higher cell numbers, scale up all reagent volumes and total volumes accordingly (e.g. for 2×10⁷ total cells, use twice the volume of all indicated reagent volumes and total volumes).

- ▲ For optimal performance it is important to obtain a single-cell suspension before magnetic labeling. Pass cells through a nylon mesh (MACS SmartStrainers (70 µm), #130-098-462 or MACS SmartStrainers (30 µm), #130-098-458) to remove cell clumps, which may clog the column. Moisten filter with buffer before use.
- ▲ The recommended incubation temperature is 2–8 °C. Higher temperatures and/or longer incubation times may lead to nonspecific cell labeling. Working on ice may require increased incubation times.
- Determine cell number.
- Centrifuge cell suspension at 300×g for 10 minutes. Aspirate supernatant completely.
- Resuspend cell pellet in 90 μ L of buffer per 10⁷ total cells. 3.
- Add 10 μL of CD11b (Microglia) MicroBeads per 10⁷ total cells. 4.
- 5. Mix well and incubate for 15 minutes in the refrigerator (2-8 °C).
- Wash cells by adding 1-2 mL of buffer per 10⁷ cells and centrifuge at 300×g for 10 minutes. Aspirate supernatant completely.
- Resuspend up to 10^8 cells in 500 µL of buffer.
 - ▲ Note: For higher cell numbers, scale up buffer volume accordingly.
 - ▲ Note: For depletion with LD Columns, resuspend up to 1.25×10⁸ cells in $500~\mu L$ of buffer.
- Proceed to magnetic separation (2.3).

2.3 Magnetic separation

- ▲ Choose an appropriate MACS Column and MACS Separator according to the number of total cells and the number of CD11b⁺ cells. For details refer to the table in section 1.4.
- ▲ Always wait until the column reservoir is empty before proceeding to the next step.

Magnetic separation with MS or LS Columns

- Place column in the magnetic field of a suitable MACS Separator. For details refer to the respective MACS Column data sheet.
- Prepare column by rinsing with the appropriate amount of buffer:
 - MS: 500 μL LS: 3 mL
- Apply cell suspension onto the column. Collect flow-through containing unlabeled cells.
- Wash column with the appropriate amount of buffer. Collect unlabeled cells that pass through and combine with the flowthrough from step 3.
 - MS: 3×500 μL LS: 3×3 mL
 - ▲ Note: Perform washing steps by adding buffer aliquots only when the column reservoir is empty.
- Remove column from the separator and place it on a suitable collection tube.

6. Pipette the appropriate amount of buffer onto the column. Immediately flush out the magnetically labeled cells by firmly pushing the plunger into the column.

MS: 1 mL LS: 5 mL

7. To increase the purity of microglia cells, it is recommended to enrich the positive fraction over a second MS or LS Column. Repeat the manetic separation procedure as described in steps 1 to 6 by using a new column.

Depletion with LD Columns

- 1. Place LD Column in the magnetic field of a suitable MACS* Separator. For details refer to the LD Column data sheet.
- 2. Prepare column by rinsing with 2 mL of buffer.
- 3. Apply cell suspension onto the column.
- 4. Collect unlabeled cells that pass through and wash column with 2×1 mL of buffer. Collect total flow-through; this is the unlabeled cell fraction. Perform washing steps by adding buffer two times. Only add new buffer when the column reservoir is empty.

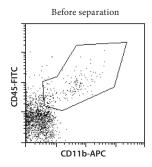
Magnetic separation with the MultiMACS™ Cell24 Separator

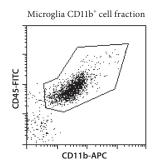
Refer to the MultiMACS[™] Cell Separator user manual for instructions on how to use the MultiMACS Cell24 Separator.

Magnetic separation with the autoMACS® Pro Separator

- ▲ Refer to the respective user manual for instructions on how to use the autoMACS® Pro Separator.
- ▲ Buffers used for operating the autoMACS Pro Separator should have a temperature of ≥10 °C.
- ▲ Program choice depends on the isolation strategy, the strength of magnetic labeling, and the frequency of magnetically labeled cells. For details refer to the section describing the cell separation programs in the respective user manual.
- 1. Prepare and prime the instrument.
- 2. Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube in row A of the tube rack and the fraction collection tubes in rows B and C.
- For a standard separation choose one of the following programs:

Positive selection: Possel


Collect positive fraction in row C of the tube rack.


Depletion: Depletes

Collect negative fraction in row B of the tube rack.

3. Example of a separation using CD11b (Microglia) MicroBeads

CD11b⁺ cells were isolated from mouse neural cell suspension using the CD11b (Microglia) MicroBeads, an MS Column, and a MiniMACS[™] Separator. Cells are fluorescently stained with CD11b-APC and CD45-FITC. Cell debris and dead cells are excluded from the analysis based on scatter signals and propidium iodide fluorescence.

4. References

- Justin, A. et al. (2012) The Ifng gene is essential for Vdr gene expression and vitamin D₃-mediated reduction of the pathogenic T cell burden in the central nervous system in experimental autoimmune encephalomyelitis, a multiple sclerosis model. J. Immunol. 189: 3188–3197.
- Lauren, L. et al. (2011) Microglia and memory: modulation by early-life infection. J. Neurosci. 31: 15511–15521.
- Kremer, M. et al. (2010) Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice. J. Immunol. 185: 5549–5560.
- Lee, J.-K. et al. (2008) Regulator of G-protein signaling 10 promotes dopaminergic neuron survival via regulation of the microglial inflammatory response. J. Neurosci. 28: 8517–8528.
- Su, W. et al. (2014) The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-maf. J. Immunol. 192: 358–366.
- Zhang, X. et al. (2014) Peripheral role of cathepsin S in TH1 cell-dependent transition of nerve injury-induced acute pain to a chronic pain state. J. Neurosci. 34: 3013–3022.
- Woodling, N. S. et al. (2014) Suppression of alzheimer-associated inflammation by microglial prostaglandin-E₂ EP4 receptor signaling. J. Neurosci. 34: 5882– 5894.
- Kleinberger, G. et al. (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 6: 243ra86.
- Cho, S.-H. et al. (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J. Neurosci. 35: 807–818.
- Zeiner, P. S. et al. (2014) MIF receptor CD74 is restricted to microglia/ macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol. doi: 10.1111/bpa.12194.
- Jin, L.-W. et al. (2015) Dysregulation of glutamine transporter SNAT1 in rett syndrome microglia: a mechanism for mitochondrial dysfunction and neurotoxicity. J. Neurosci. 35: 2516–2529.
- Sharma, K. et al. (2015) Cell type- and brain region-resolved mouse brain proteome. Nature Neuroscience 18: 1819–1831.
- Balez, R. et al. (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Scientific reports 6: 31450.
- Holt, L. M. and Olsen, M. L. (2016) Novel applications of magnetic cell sorting to analyze cell-type specific gene and protein expression in the central nervous system. PloS one 11: e0150290.

Refer to www.miltenyibiotec.com for all data sheets and protocols. Miltenyi Biotec provides technical support worldwide. Visit www.miltenyibiotec.com/local to find your nearest Miltenyi Biotec contact.

Legal notices

Limited product warranty

Miltenyi Biotec B.V. & Co. KG and/or its affiliate(s) warrant this product to be free from material defects in workmanship and materials and to conform substantially with Miltenyi Biotec's published specifications for the product at the time of order, under normal use and conditions in accordance with its applicable documentation, for a period beginning on the date of delivery of the product by Miltenyi Biotec or its authorized distributor and ending on the expiration date of the product's applicable shelf life stated on the product label, packaging or documentation (as applicable) or, in the absence thereof, ONE (1) YEAR from date of delivery ("Product Warranty"). Miltenyi Biotec's Product Warranty is provided subject to the warranty terms as set forth in Miltenyi Biotec's General Terms and Conditions for the Sale of Products and Services available on Miltenyi Biotec's website at www.miltenyibiotec.com, as in effect at the time of order ("Product Warranty"). Additional terms may apply. BY USE OF THIS PRODUCT, THE CUSTOMER AGREES TO BE BOUND BY THESE TERMS.

THE CUSTOMER IS SOLELY RESPONSIBLE FOR DETERMINING IF A PRODUCT IS SUITABLE FOR CUSTOMER'S PARTICULAR PURPOSE AND APPLICATION METHODS.

Technical information

The technical information, data, protocols, and other statements provided by Miltenyi Biotec in this document are based on information, tests, or experience which Miltenyi Biotec believes to be reliable, but the accuracy or completeness of such information is not guaranteed. Such technical information and data are intended for persons with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information. Miltenyi Biotec shall not be liable for any technical or editorial errors or omissions contained herein.

All information and specifications are subject to change without prior notice. Please contact Miltenyi Biotec Technical Support or visit www.miltenyibiotec.com for the most up-to-date information on Miltenyi Biotec products.

Licenses

This product and/or its use may be covered by one or more pending or issued patents and/or may have certain limitations. Certain uses may be excluded by separate terms and conditions. Please contact your local Miltenyi Biotec representative or visit Miltenyi Biotec's website at www.miltenyibiotec.com for more information.

The purchase of this product conveys to the customer the non-transferable right to use the purchased amount of the product in research conducted by the customer (whether the customer is an academic or for-profit entity). This product may not be further sold. Additional terms and conditions (including the terms of a Limited Use Label License) may apply.

CUSTOMER'S USE OF THIS PRODUCT MAY REQUIRE ADDITIONAL LICENSES DEPENDING ON THE SPECIFIC APPLICATION. THE CUSTOMER IS SOLELY RESPONSIBLE FOR DETERMINING FOR ITSELF WHETHER IT HAS ALL APPROPRIATE LICENSES IN PLACE. Miltenyi Biotec provides no warranty that customer's use of this product does not and will not infringe intellectual property rights owned by a third party. BY USE OF THIS PRODUCT, THE CUSTOMER AGREES TO BE BOUND BY THESE TERMS.

Trademarks

autoMACS, gentleMACS, MACS, MidiMACS, the Miltenyi Biotec logo, MiniMACS, MultiMACS, OctoMACS, and QuadroMACS are registered trademarks or trademarks of Miltenyi Biotec and/or its affiliates in various countries worldwide.

Copyright © 2020 Miltenyi Biotec and/or its affiliates. All rights reserved.