Reference list

CliniMACS Prodigy® T Cell Transduction

Clinical study results – patient treatment with CAR T cell products

Maschan, M. et al. (2021) Multiple site place-of-care manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients. Nat. commun. 12: 7200. https://doi.org/10.1038/s41467-021-27312-6

Shah, N. N. et al. (2020) Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: A phase 1 dose escalation and expansion trial. Nat. Med. 26: 1569–1575. https://doi.org/10.1038/s41591-020-1081-3

Technical performance – manufacturing feasibility, CAR T cell functionality and pre-clinical data

Bozza, M. et al. (2021) A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Sci. Adv. 7: eabf1333. https://doi.org/10.1126/sciadv.abf1333

Vedvyas, Y. et al. (2019) Manufacturing and preclinical validation of CAR T cells targeting ICAM-1 for advanced thyroid cancer therapy. Sci. Rep. 9: 10634. https://doi.org/10.1038/s41598-019-46938-7
https://doi.org/10.1016/j.omtm.2018.11.010

https://doi.org/10.2147/DDDT.S175113

https://doi.org/10.1007/s00262-018-2155-7

https://doi.org/10.1016/j.jcyt.2017.09.005

https://doi.org/10.1089/hum.2017.111

https://doi.org/10.1089/hum.2016.091

https://doi.org/10.1016/j.jcyt.2016.05.009