UltraMicroscope II

生体システム全体の高速 3D イメージングと解析

UltraMicroscope II を使用した光シート蛍光顕微鏡は、生物学的システム全体の可視化するためのツールです。サンプルを光シートを通過させていくことで、シャープで明るい 3D 画像を生成することができます。大きな組織サンプルであっても、臓器全体のイメージングであっても、使用する透明化プロトコルやイメージング液に関係なく、お手元のサンプルに対応できるように設計されています。
この光シート蛍光顕微鏡には 2 つの構成があり、マルチユーザー環境での取り扱いが容易なズームボディモジュールと、今までにない解像度と品質を実現するスーパープランモジュールのどちらかを装着することができます。すでにお持ちの UltraMicroscope II をスーパープランモジュール構成へアップグレードも可能です。

Benefits

ユーザーフレンドリーな設計

直感的なデザイン、新規ユーザーへのトレーニング期間の短さ、そして、スタッフのサポートの必要性の少なさの点で、この光シート蛍光顕微鏡は共通のイメージング施設に最適なツールです。

さまざまな透明化プロトコルへの簡単な対応

どんなの透明化プロトコルでも使用することができます。また、高画質を取得するためにソフトウェアで屈折率補正を利用することができます。

高い柔軟性

光シートイメージングのために設計・最適化された当社の対物レンズシリーズをご利用ください。当社のモジュール式の光シート技術は、お客様のニーズに合わせてカスタマイズすることができます。

全体像から細胞イメージングまで

全体像を見失うことなく、高解像度で細胞の詳細を観察することができます。

Features and specifications

The UltraMicroscope II comes in two configurations

Both setups feature an easy-to-access sample chamber, which can accommodate large samples. Homogeneous fluorescence excitation is achieved by six light sheets that illuminate the sample from both sides. 

The Super Plan configuration includes an automated detection unit delivering unprecedented image resolution and quality. Specially developed for light sheet microscopy, the MI Plan objective series maximizes the imaging performance in all clearing media. The Super Plan Module is also available as an upgrade for existing UltraMicroscope II systems. With its easy handling and magnification adjustment, the Zoom body configuration is the ideal choice for a multi-user environment.

Super Plan configuration

UMII Super

Optimal sensitivity

Latest sCMOS cameras with large field of view and excellent sensitivity guarantee outstanding data quality.

Automated detection unit

The automated magnification changer (0.6×, 1×, 1.66×, and 2.5×) and chromatic correction enable high-resolution multicolor imaging.

MI Plan objective lenses

Optimized and developed for high-resolution light sheet microscopy – even for large samples. Compatible with all clearing media.

Large sample chamber

The chamber can host entire rodent organs, rodent tumors, and mouse embryos.

1 2 3 4

Optimal sensitivity

Latest sCMOS cameras with large field of view and excellent sensitivity guarantee outstanding data quality.

Automated detection unit

The automated magnification changer (0.6×, 1×, 1.66×, and 2.5×) and chromatic correction enable high-resolution multicolor imaging.

MI Plan objective lenses

Optimized and developed for high-resolution light sheet microscopy – even for large samples. Compatible with all clearing media.

Large sample chamber

The chamber can host entire rodent organs, rodent tumors, and mouse embryos.

UMII Super

Zoom body configuration

UMII Zoom

Optimal sensitivity

Latest sCMOS cameras with large field of view and excellent sensitivity guarantee outstanding data quality.

Motorized tube lens

Chromatic correction enables acquisition of perfectly aligned multicolor images.

Easy zooming

The zoom body configuration is ideal for multi-user environ­ments. Magnification is adjusted by simply turning the zoom dial.

Large sample chamber

The chamber can host entire rodent organs, rodent tumors, and mouse embryos.

1 2 3 4

Optimal sensitivity

Latest sCMOS cameras with large field of view and excellent sensitivity guarantee outstanding data quality.

Motorized tube lens

Chromatic correction enables acquisition of perfectly aligned multicolor images.

Easy zooming

The zoom body configuration is ideal for multi-user environ­ments. Magnification is adjusted by simply turning the zoom dial.

Large sample chamber

The chamber can host entire rodent organs, rodent tumors, and mouse embryos.

UMII Zoom
  • Culemann, S. et al. (2019) Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature
  • Esterházy, D. et al. (2019) Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature
  • Lowe, K. L. et al. (2015) Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood 125(4): 3769-3777
  • Sjöstedt, E.. et al. (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367(6482)
  • Kimbrough, A. et al. (2020) Brain-wide functional architecture remodeling by alcohol dependence and abstinence. Proc. Natl. Acad. Sci. U.S.A.
  • Hägerling, R. et al. (2013) A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 32(5): 629-644
  • Weber, T. G. et al. (2014) Apoptosis Imaging for Monitoring DR5 Antibody Accumulation and Pharmacodynamics in Brain Tumors Noninvasively. Cancer Res. 74(7): 1913-1923
  • Belle, M. et al. (2017) Tridimensional Visualization and Analysis of Early Human Development. Cell 169(1): 161-173
  • Kirst, C. et al. (2020) Mapping the Fine-Scale Organization and Plasticity of the Brain Vasculature. Cell 180(4): 780-795
  • Renier, N. et al. (2014) iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging. Cell 159(4): 896-910
  • Renier, N. et al. (2016) Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell 165(7): 1789-1802
  • Susaki, E. A. et al. (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157(3): 726-739
  • Tainaka, K. et al. (2014) Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159(4): 911-924
  • Ye, L. et al. (2016) Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences. Cell 165(7): 1776-1788
  • Pan, C. et al. (2016) Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 10: 859-867
  • Schmid, B. et al. (2019) 3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods 16(4): 278-280
  • Todorov, M.I. et al. (2020) Machine learning analysis of whole mouse brain vasculature. Nat. Methods
  • Ertürk, A. et al. (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7(11): 1983-1995
  • Susaki, E. A. et al. (2015) Advanced CUBIC protocols for whole- brain and whole-body clearing and imaging. Nat. Protoc. 10(11): 1709-1727
  • Ueda, H.R. (2020) Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21: 61-79
  • Kullmann, J. et al. (2020) Oxygen Tension and the VHL-Hif1α Pathway Determine Onset of Neuronal Polarization and Cerebellar Germinal Zone Exit. Neuron
  • Wan, Y. et al. (2019) Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes Annu. Rev. Cell Dev. Biol. 35: 655-681
  • Liebmann, T. et al. (2016) Three-Dimensional Study of Alzheimer’s Disease Hallmarks Using the iDISCO Clearing Method Cell Rep 16(4): 1138-1152
  • Zundler, S. et al. (2017) Three-Dimensional Cross-Sectional Light-Sheet Microscopy Imaging of the Inflamed Mouse Gut. Gastroenterology 153(1): 898-900
  • Buglak, N. E. (2020) Light Sheet Fluorescence Microscopy as a New Method for Unbiased Three-Dimensional Analysis of Vascular Injury Cardiovasc. Res.
  • Nie, J. et al. (2019) Fast, 3D Isotropic Imaging of Whole Mouse Brain Using Multiangle‐Resolved Subvoxel SPIM Adv. Sci.
  • Claser, C. et al. (2019)
    Lung endothelial cell antigen cross-presentation to CD8
    +
    T cells drives malaria-associated lung injury.
    Nat Commun. 10(1): 5066
  • Levy, R.B et al. (2019) Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nat Commun. 10(1): 2783
  • Lozovaya, N. et al. (2018) GABAergic inhibition in dual-transmission cholinergic and GABAergic striatal interneurons is abolished in Parkinson disease. Nat Commun. 9(1): 1422

Applications

Support

Service where you need it

UltraMicroscope II

生体システム全体の高速 3D イメージングと解析

Request further information

Related products for
UltraMicroscope II

5 products available | view all