Improved immune checkpoint detection with recombinant antibodies

  • Flow cytometric analysis for high-content, multi-parametric information in immune checkpoint studies
  • Reliable estimation of checkpoint protein expression without blocking reagents
  • Simple and fast sample analyses, while improving results

Immune checkpoints are important regulators that maintain immune homeostasis and prevent autoimmunity. They consist of both stimulatory and inhibitory pathways that are important for maintaining self-tolerance as well as regulating the type, magnitude, and duration of immune responses. Under normal circumstances, immune checkpoint molecules maintain homeostasis and fight against disease conditions; however, some of them also play a significant role in promoting tumor progression.

Therefore, targeting immune checkpoints to treat cancer is extensively studied in the field of immuno-oncology. Although the immune checkpoint targets that have been studied the most are inhibitory pathways, identification of novel stimulatory pathways also encourage scientists to develop drugs targeting those pathways.

To study immune checkpoints and compounds that have the potential to target these molecules, flow cytometric analysis yields high-content and multi-parametric information. Even though it is still considered a state-of-the-art technique, traditional, hybridoma-derived antibody clones used for flow cytometric evaluation show a tendency of unspecific binding to immune cells via naturally expressed Fcγ receptors (FcγR). This can lead to an inaccurate and biased estimation of immune checkpoint protein expression.

Blocking reagents, including commercially available immunoglobulins, are often used to avoid FcγR-mediated background binding. This adds additional complexity to the analysis, as there is no defined consensus on the best titer and type of blocking reagent to be used for complex tissues like tumors. In addition, blocking reagents increase staining time and hinder scale up or automation of multiple sample analyses.

Our recombinantly generated REAfinity™ Recombinant Antibodies provide several benefits over hybridoma-derived antibody clones, for example, a specifically mutated human IgG1 Fc region that abolishes their binding to FcγRs. This enables more reliable and reproducible flow cytometric analyses of immune cells.

Find flow cytometry data on immune checkpoints using REAfinity Antibodies below.

Immune checkpoints and their ligands that are currently considered for drug development (click on a specificity to find product information on available REAfinity  Antibody clones).

Immune checkpointModeKey function SourceRespective ligands
CD152 (CTLA-4)InhibitoryDownregulation of immune responses T cells CD80 (B7-1), CD86 (B7-2)
CD279 (PD1)InhibitoryDownregulation of immune responses and promoting self-tolerance by suppressing T cell inflammatory activityActivated T cellsCD274 (PD-L1), CD273 (PD-L2)
CD223 (LAG-3)InhibitoryDownregulation of T cell function to prevent tissue damage and autoimmunityT cellsMHC-II
TIM-3InhibitoryPromoting immunosuppression by inducing expansion of myeloid-derived suppressor cells (MDSCs)T cellsGAL9
TIGITInhibitoryIndirectly increasing the release of immunregulatory cytokines (e.g., IL-10), and thereby preventing maturation of dendritic cells (DCs)T, NK cellsCD155 (PVR), CD112 (Nectin-2)
CD276 (B7-H3)InhibitoryInhibition of T cell activation, proliferation, and cytokine productionAPCs, NK, B, and T cells 
CD73InhibitoryCo-signal for T cell activationMost tissues 
CD272 (BTLA)InhibitoryBlocking B and T cell activation, proliferation, and cytokine productionLymphocytesCD270 (HVEM
TGF-β InhibitorySuppression of cytotoxic T cells, which can promote cancer cell proliferation, invasion, and metastases during tumorigenesis (functional switch known as the TGF-β paradox)Leukocytes, macrophagesTGF-βR
KIRInhibitoryPromoting self-tolerance by dampening lymphocyte activation, cytotoxic activity, and cytokine releaseNK cellsMHC-I
CD47InhibitoryInhibition of macrophages and other myeloid cellsAll human cellsCD172a (SIRPα)
CD134 (OX40)Co-stimulatoryActivation, potentiation, proliferation, and survival of T cells and modulation of NK cell functionT cells CD252 (OX40L)
CD357 (GITR)Co-stimulatoryTreg activation, leukocyte adhesion and migrationT, NK cellsGITRL
CD278 (ICOS)Co-stimulatoryCo-stimulation of proliferation and cytokine productionCD4+ T cellsCD275 (B7-H2)
CD137 (4-1BB)Co-stimulatoryStimulation of immune cell proliferation and activation, particularly of T and NK cellsT, NK cellsCD137L (4-1BBL)
CD27Co-stimulatoryActivation and differentiation of T cells into effector and memory cells, and boosting B cellsT cellsCD70
CD40Co-stimulatoryInducing dendritic cell maturation and thereby triggering T cell activation and differentiationT cellsCD154 (CD40L)
CD28Co-stimulatoryStimulation of T cell expansionT cellsCD80 (B7-1), CD86 (B7-2)
IDOOtherPromoting the differentiation and activation of Treg cells and decreasing the activity of CD8+ T cells leading to an immunosuppressed environmentTumor cells 
TLROtherRecognition of pathogens and control of immune responseDCs, macrophages 
CD25 (IL2R)OtherPromoting the differentiation of T cellsT cells 
IL-10OtherInhibiting secretion of pro-inflammatory cytokines as well as expression of MHC and co-stimulatory molecules, leading to inhibition of T cell functionMonocytes 
Background staining with hybridoma-derived antibodies leads to biased phenotypical characterization of critical tumor-infiltrating T cell subpopulations.
Background staining with hybridoma-derived antibodies leads to biased phenotypical characterization of critical tumor-infiltrating T cell subpopulations.

Precise analysis of T cell populations without the need for FcR blocking

It has been shown that chronically-activated T cells, such as tumor-reactive T cells, can express FcγRs, which is relevant for T cell function within the tumor microenvironment. Our results show that FcγR expression on T cells lead to unspecific binding of hybridoma-derived antibodies, resulting in false characterization of T cell subtypes. 

Addition of a FcR blocking reagent reduced the amount of background binding; however, FcγR blocking is often suboptimal, as it has been shown to affect T cell function in vivo. This issue can be resolved by using REAfinity™ Antibodies, which enable an accurate analysis of T cell subtypes without the need for FcR blocking.

Seems like you are coming from USA!
Do you want to visit our website in your country?