Find the products and resources you are looking for!
Get in touch!
Our local employees are always happy to answer your questions. Highly trained and experienced teams in your country can provide quick, helpful, and comprehensive support.
Miltenyi Biotec distribution:
As a global market leader with numerous subsidiaries and distributors, Miltenyi Biotec is committed to providing our customers around the world with the highest quality products. In addition to direct selling in more than 20 countries in North America, Europe and Asia/Pacific, Miltenyi Biotec also provides support for our customers through an extensive distributor network covering dozens of additional countries.
As a global market leader with numerous subsidiaries and distributors, Miltenyi Biotec is committed to providing our customers around the world with the highest quality products. In addition to direct selling in more than 20 countries in North America, Europe and Asia/Pacific, Miltenyi Biotec also provides support for our customers through an extensive distributor network covering dozens of additional countries.
Cookie Settings
We use cookies in order to provide the best possible website experience for you. This includes cookies that are technically required to ensure a proper functioning of the website, as well as cookies which are used solely for anonymous statistical purposes, for more comfortable website settings, or for displaying personalized content. You are free to choose the categories you would like to permit. Please note that depending on your settings, the full functionality of the website may no longer be available. Further information can be found in our Privacy Statement.
Immune checkpoints are important regulators that maintain immune homeostasis and prevent autoimmunity. They consist of both stimulatory and inhibitory pathways that are important for maintaining self-tolerance as well as regulating the type, magnitude, and duration of immune responses. Under normal circumstances, immune checkpoint molecules maintain homeostasis and fight against disease conditions; however, some of them also play a significant role in promoting tumor progression.
Therefore, targeting immune checkpoints to treat cancer is extensively studied in the field of immuno-oncology. Although the immune checkpoint targets that have been studied the most are inhibitory pathways, identification of novel stimulatory pathways also encourage scientists to develop drugs targeting those pathways.
To study immune checkpoints and compounds that have the potential to target these molecules, flow cytometric analysis yields high-content and multi-parametric information. Even though it is still considered a state-of-the-art technique, traditional, hybridoma-derived antibody clones used for flow cytometric evaluation show a tendency of unspecific binding to immune cells via naturally expressed Fcγ receptors (FcγR). This can lead to an inaccurate and biased estimation of immune checkpoint protein expression.
Blocking reagents, including commercially available immunoglobulins, are often used to avoid FcγR-mediated background binding. This adds additional complexity to the analysis, as there is no defined consensus on the best titer and type of blocking reagent to be used for complex tissues like tumors. In addition, blocking reagents increase staining time and hinder scale up or automation of multiple sample analyses.
Our recombinantly generated REAfinity™ Antibodies provide several benefits over hybridoma-derived antibody clones, for example, a specifically mutated human IgG1 Fc region that abolishes their binding to FcγRs. This enables more reliable and reproducible flow cytometric analyses of immune cells.
Find flow cytometry data on immune checkpoints using REAfinity Antibodies below.
Immune checkpoints and their ligands that are currently considered for drug development
(click on a specificity to find product information on available REAfinity Antibody clones)
Immune checkpoint | Mode | Key function | Source | Respective ligands |
CD152 (CTLA-4) | Inhibitory | Downregulation of immune responses | T cells | CD80 (B7-1), CD86 (B7-2) |
CD279 (PD1) | Inhibitory | Downregulation of immune responses and promoting self-tolerance by suppressing T cell inflammatory activity | Activated T cells | CD274 (PD-L1), CD273 (PD-L2) |
CD223 (LAG-3) | Inhibitory | Downregulation of T cell function to prevent tissue damage and autoimmunity | T cells | MHC-II |
TIM-3 | Inhibitory | Promoting immunosuppression by inducing expansion of myeloid-derived suppressor cells (MDSCs) | T cells | GAL9 |
TIGIT | Inhibitory | Indirectly increasing the release of immunregulatory cytokines (e.g., IL-10), and thereby preventing maturation of dendritic cells (DCs) | T, NK cells | CD155 (PVR), CD112 (Nectin-2) |
CD276 (B7-H3) | Inhibitory | Inhibition of T cell activation, proliferation, and cytokine production | APCs, NK, B, and T cells | |
CD73 | Inhibitory | Co-signal for T cell activation | Most tissues | |
CD272 (BTLA) | Inhibitory | Blocking B and T cell activation, proliferation, and cytokine production | Lymphocytes | CD270 (HVEM) |
TGF-β | Inhibitory | Suppression of cytotoxic T cells, which can promote cancer cell proliferation, invasion, and metastases during tumorigenesis (functional switch known as the TGF-β paradox) | Leukocytes, macrophages | TGF-βR |
KIR | Inhibitory | Promoting self-tolerance by dampening lymphocyte activation, cytotoxic activity, and cytokine release | NK cells | MHC-I |
CD47 | Inhibitory | Inhibition of macrophages and other myeloid cells | All human cells | CD172a (SIRPα) |
CD134 (OX40) | Co-stimulatory | Activation, potentiation, proliferation, and survival of T cells and modulation of NK cell function | T cells | CD252 (OX40L) |
CD357 (GITR) | Co-stimulatory | Treg activation, leukocyte adhesion and migration | T, NK cells | GITRL |
CD278 (ICOS) | Co-stimulatory | Co-stimulation of proliferation and cytokine production | CD4+ T cells | CD275 (B7-H2) |
CD137 (4-1BB) | Co-stimulatory | Stimulation of immune cell proliferation and activation, particularly of T and NK cells | T, NK cells | CD137L (4-1BBL) |
CD27 | Co-stimulatory | Activation and differentiation of T cells into effector and memory cells, and boosting B cells | T cells | CD70 |
CD40 | Co-stimulatory | Inducing dendritic cell maturation and thereby triggering T cell activation and differentiation | T cells | CD154 (CD40L) |
CD28 | Co-stimulatory | Stimulation of T cell expansion | T cells | CD80 (B7-1), CD86 (B7-2) |
IDO | Other | Promoting the differentiation and activation of Treg cells and decreasing the activity of CD8+ T cells leading to an immunosuppressed environment | Tumor cells | |
TLR | Other | Recognition of pathogens and control of immune response | DCs, Macrophages | |
CD25 (IL2R) | Other | Promoting the differentiation of T cells | T cells | |
IL-10 | Other | Inhibiting secretion of pro-inflammatory cytokines as well as expression of MHC and co-stimulatory molecules, leading to inhibition of T cell function | Monocytes |
Background-free analysis of mouse TILs (application note)
Copyright © 2021 Miltenyi Biotec and/or its affiliates. All rights reserved.