Clinically applicable CD304 (BDCA-4)$^+$ human plasmacytoid dendritic cells – a new era in dendritic cell–based immunotherapy

Jurjen Tel1, Erik Aarntzen1,2, Gregor Winkels3, Carl G. Figdor1, and I. Jolanda M. de Vries1,2

1 Department of Tumor Immunology, 2 Medical Oncology Radboud University Nijmegen Medical Centre and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands. 3 Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
Clinically applicable CD304 (BDCA-4)+ human plasmacytoid dendritic cells – a new era in dendritic cell–based immunotherapy

Jurjen Tel1, Erik Aarnntzen1,2, Gregor Winkels3, Carl G. Figdor1, and I. Jolanda M. de Vries1,2

1 Department of Tumor Immunology, 2 Medical Oncology Radboud University Nijmegen Medical Centre and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands. 3 Miltenyi Biotec GmbH, Bergisch Gladbach, Germany

Introduction

Dendritic cells (DCs) constitute a family of antigen-presenting cells defined by their morphology, phenotype, and unique capacity to process exogenously encountered antigens and to present them to naive T cells. Following infection or inflammation, DCs undergo a complex process of maturation and migrate to lymph nodes to present antigens and activate T cells. This decisive role in inducing immunity was the rationale for DC-based immunotherapy, in which DCs loaded with tumor antigens were injected into cancer patients to stimulate T cells to eradicate tumors¹,². Now, after more than a decade, we know that monocyte-derived DCs (Mo-DCs) can induce immune responses in a significant number of patients, in particular when both CD4+ and CD8+ T cell responses are obtained, as also recently shown by our DC vaccination studies³. Nevertheless, the number of objective clinical responses has been limited, hampering its implementation as a novel form of standard treatment⁴. Although the evidence of clinical responses is still scarce, expectations are high because the clinical responses that are induced are often long lasting. It remains unclear whether DCs differentiated ex vivo from monocytes or CD34+ progenitors are the optimal source of DCs for the induction of potent immune responses⁵. Because of the limited number of naturally circulating DCs, virtually all vaccination studies for more than a decade have been based on DCs differentiated ex vivo from monocytes or CD34+ progenitors. Recently, it was proposed that these “artificial” DCs may be less effective than their natural counterparts that circulate in the blood because of the extensive culture period. Moreover, compounds required to differentiate precursors into DCs might negatively affect DC function. Especially their migratory capacity towards T cell areas in lymph nodes might decrease due to exhaustion of the DCs. We reported on the first clinical study of therapeutic vaccination against cancer exploiting naturally occurring plasmacytoid DCs (pDCs) purified by using MACS® Technology⁶.

Materials and methods

Isolation of pDCs with the CliniMACS® System

The pDCs were directly isolated from apheresis products using the fully enclosed CliniMACS® Plus Instrument and GMP-grade magnetic bead–coupled Anti-BDCA-4 antibodies (CliniMACS CD304 (BDCA-4) Reagent).⁶ The purity of pDCs after immunomagnetic isolation was determined by flow cytometry. The following primary monoclonal antibodies (mAbs) and the appropriate isotype controls were used: CD45-FITC, CD303 (BDCA-2)-PE and CD123-APC (all Miltenyi Biotec).⁶ The procedure resulted in clinically applicable purified pDCs, which had an average purity of 75% and a yield between 13×10⁶ and 33×10⁶ cells (fig. 1). Following apheresis and CliniMACS Cell Separation, pDCs were cultured overnight at a concentration of 10⁶ cells/mL in X-VIVO® 15 medium.
To determine mRNA expression of IFN-α and (Lonza) containing 2% pooled human serum, supplemented with 10 ng/mL recombinant human interleukin-3. The pDCs were subsequently activated for 6 hours by addition of FSME-IMMUN² (1:10 v/v) (Baxter AG). During the last 3 hours of activation, pDCs were loaded with the melanoma-associated peptides gp100154-167, gp100280-288, and tyrosinase². Purity of the vaccine was determined by flow cytometry (fig. 1). The peptide-loaded pDCs were administered intranodally in a clinically tumor-free lymph node region under ultrasound guidance⁶.

RNA isolation and quantitative PCR
To determine mRNA expression of IFN-α and RIG-I, blood was drawn before vaccination and at 4 and 24 hours after vaccination. RNA isolation from patient samples was performed using the PAXGene³ Blood RNA Kit (Qiagen) according to the manufacturer's instructions.

RNA isolations from PBMCs from healthy volunteers were done using the ZR RNA isolation kit (Zymo Research) according to the manufacturer’s instructions. mRNA levels for the genes of interest were determined by quantitative PCR (qPCR) with a Bio-Rad⁴ CFX apparatus (Bio-Rad) with SYBR® Green (Applied Biosystems). Analysis was done using the Bio-Rad CFX Manager⁷ v1.6 software, and expression levels were determined relative to PBGD expression.⁶

¹¹¹In-oxinate labeling and scintigraphic imaging
pDCs activated for 6 hours with FSME were labeled with 5 MBq ¹¹¹In-oxinate (GE Healthcare) in 0.1 M Tris-HCl (pH 7.0) for 15 minutes at room temperature as described previously⁵. In vivo planar scintigraphic images (256×256 matrix, 174 and 247 keV ¹¹¹In photopeaks with 15% energy window) of the injection depot and corresponding lymph node basin were acquired with a gamma camera (Siemens e.cam) equipped with medium energy collimators, 15 minutes, 24 hours, and 48 hours after injection. Migration was quantified by region-of-interest analysis of the individual nodes visualized on the images and expressed as the fraction of ¹¹¹In-labeled DCs that had migrated from the injection depot to following lymph nodes after 15 minutes, 24 hours, and 48 hours.⁶

Immunomonitoring of patients
Four days after the third vaccination, a DTH skin test was performed and frequencies of anti-vaccine CD8⁺ T cells in the blood were estimated using mixed lymphocyte peptide cultures (MLPCs) as described previously⁶. From positive DTH sites, half of the biopsy was manually cut and cultured in Gibco® RPMI 1640 (Life Technologies) containing 7% HS and IL-2 (100 U/mL, Proleukin®, Chiron). Every 7 days, half of the medium was replaced by fresh medium. After 2 to 5 weeks of culturing, T cells were tested for specificity against gp100 and tyrosinase. DTH-derived cells were stained with tetrameric MHC complexes containing the gp100145-154, gp100280-289, or tyrosinase peptides (Sanquin) combined with CD8 staining.

For the MLPCs, PBMCs isolated before and after one cycle of three pDC injections were thawed, divided into three groups, and incubated for 1 hour at room temperature in Gibco IMDM (Life Technologies) with 1% HS and 2 µM of the peptides tyrosinase² (YMDGTMSQV), wild type gp100154 (KTWGQYWQV), or wild type gp100280 (YLEPGPVPVTA). These pulsed cells were then washed, pooled, and distributed at 2×10⁶ cells/0.2 mL in round-bottom microwells in IMDM with 10% HS, L-arginine (116 mg/L), L-asparagine (36 mg/L), L-glutamine (216 mg/L), 1-methyl-L-tryptophan (100 µM), IL-2 (20 U/mL), and IL-7 (10 ng/mL). On day 7, 50% of the medium was replaced by fresh medium containing IL-2 and peptides at 4 µM. Tetramer labeling was performed on day 14 as described previously.⁶ Anti-gp100154 T cell clones were derived that represented either the spontaneous anti-gp100 T cells present prior to vaccination in patients 2, 5, 6, 10, and 11, or the pDC-induced anti-gp100 T cells present after vaccination in patients 1, 4, and 12. Tetramer-positive CD8⁺ T cells were sorted at 1 cell/well and restimulated weekly with irradiated HLA-A2 EBV-transformed B cells pulsed with the gp100154 peptide at 2 µM, and irradiated allogeneic PBMCs as feeder cells, in medium supplemented with IL-2 and IL-7.

Matched historical controls
Matched historical controls were identified from records of metastatic melanoma patients from the Radboud University Nijmegen Medical Centre (Nijmegen, The Netherlands), the Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital (Amsterdam, The Netherlands), and University Hospital Essen (Essen, Germany) who had received first-line dacarbazine (DTIC) chemotherapy at 850–1000 mg/m² i.v. at 3 weekly intervals, between March 2000 and March 2010⁶.

Statistical analysis
Significant differences from controls were determined according to paired Student’s t-test or by one-way ANOVA analysis followed by the Tukey’s post-hoc test. Differences between pre- and post-vaccination were evaluated with a Wilcoxon signed-rank test. Kaplan-Meier probability estimates of overall survival were calculated, and statistical differences between the survival of the groups were determined with a log-rank test. Statistical significance was defined as p<0.05. SPSS 19.0 was used for survival analyses.
Results and discussion

Clinical study with natural pDCs

We have embarked on exploiting pDCs that naturally circulate in the peripheral blood for cancer immunotherapy. Although it is well known that intratumoral pDCs, when inactive, are associated with tumor progression, activated interferon alpha (IFN-α)-producing pDCs can activate NK cells and induce antigen-specific T and B cell responses. Our finding that commonly used prophylactic vaccines against infectious diseases could simply be used as adjuvants to activate pDCs to secrete significant amounts of IFN-α has certainly expedited the use of naturally circulating DCs in the clinic.

We initiated the first study exploiting pDCs to treat advanced stage IV melanoma patients. Designed as a safety study, we treated 15 patients in three cohorts with dose-escalating pDC vaccines ranging from 0.3 to 3 million cells per injection. The vaccines were well tolerated and no signs of severe toxicity (common toxicity criteria grade 3–4) were observed. Six vaccinated patients developed grade 1 flu-like symptoms and one patient reported grade 2 non-treatment related pain resulting from progressive subcutaneous metastasis. In none of the vaccinated patients did we detect antibodies to the murine antibody used during the isolation procedure (data not shown). We conclude that it is feasible and safe to administer activated and tumor-peptide loaded pDCs to patients. As the number of cells was low and no data existed on their migratory capacity in vivo, we decided to inject the cells intranodally to maximize the possibility to raise an immune response. Forty-eight hours after intranodal injection, a significant proportion of 111In-labeled pDCs remained at the injection site, and distinct amounts were detected in distant lymph nodes (fig. 2A). To verify whether activated pDCs secreted significant quantities of type I IFNs in vivo, we investigated gene expression of IFN-α and the IFN-induced gene RIG-I in blood mononuclear cells before and after vaccination. We compared these expression levels to those of cells from healthy individuals. In line with their ability to secrete large amounts of type I IFNs, transcription of IFN-α was clearly induced four hours after vaccination and decreased 20 hours later (fig. 2B), indicating a temporal systemic induction of type I IFNs. As expected,

![Image](https://example.com/image.jpg)

Figure 2 Activated pDCs are mature and migrate to distinct lymph nodes in vivo. (A) Migration and biodistribution of 111In-labeled pDCs visualized by scintigraphical imaging. Forty-eight hours after administration, 11% of injected pDCs were distributed over up to 4 distant lymph nodes away from the injection depot. (B) The graphs show the IFN-α and RIG-I gene expression levels in the blood relative to PBGD expression at the indicated times after each vaccination. Healthy indicates steady-state expression levels of indicated genes in 8 healthy individuals (n.d.: not detected; ** p<0.01; *** p<0.001). (C) pDC vaccine–related CD8+ T cell responses were detected in the blood after MLPCs. The graph shows the frequencies of gp100154 tetramer–CD8+ T cells in the blood before and after one cycle of vaccination. (D) pDC vaccine–related CD8+ T cell responses were detected in biopsies taken from DTH skin tests. Two weeks after the third pDC injection, a DTH skin test was performed by intradermally injecting pDCs loaded with either the gp100 or the tyrosinase peptides. Biopsies taken 2 days later were cultured for 3–4 weeks in low-dose IL-2, and proliferating T cells were stained with specific tetramers. Dot plots show DTH-infiltrating lymphocytes stained with gp100154 tetramers (** p<0.01). Data were adapted from reference 6.
Although the initial endpoint of this study was safety and feasibility, we obtained some surprising clinical results: the median overall survival showed a remarkable improvement compared to matched control patients: 22.0 months (95% CI: 1.8–42.2) versus 7.6 months (95% CI: 5.8–9.4) (fig. 3). We observed highly improved clinical responses with these freshly isolated naturally circulating DCs when compared to conventional Mo-DCs: 7 out of 15 stage IV melanoma patients are still alive two years after start of treatment. Interestingly, we obtained these results even with a tenfold lower dose, demonstrating the potency of these natural pDCs. Interestingly, Celli et al. recently reported that as little as one hundred DCs are needed to elicit a T cell response, indicating that indeed perhaps only small amounts of DCs are needed for the induction of anti-tumor responses11.

Conclusion

Taken together, our results demonstrate that 1) the pDCs injected into a single lymph node distributed into downstream nodes, 2) after each vaccination even small numbers of injected pDCs induced a systemic type I IFN signature, and 3) injected pDCs primed tumor-specific CD8+ T cells. These findings indicate that it is worthwhile to further explore the potential of pDCs and other naturally circulating DCs for cancer immunotherapy. It will also be interesting to see if other DC subsets, such as the myeloid DCs, are equally or even more effective.

Acknowledgments

This research was supported by NWO Vidi grant 917.76.363 to IJMvdV, by EU grants Cancerimmunotherapy (LSHC-CT-2006-518234) and DC-THERA (LSHB-CT-2004-512074), by the NOTK foundation, and by the Cancer Plan of the Belgian Federal Public Service. CGF was awarded a NWO Spinoza prize.

References