Reference list

CliniMACS® CD14 System

CD14 Enrichment

General - performance data / pre-clinical work

Dendritic cell-based vaccine for therapy of B-CLL patients using the CliniMACS platform for large-scale clinical production.
Adamson, L. et al.

PGE2 transiently enhances DC expression of CCR7 but inhibits the ability of DCs to produce CCL10 and attract naïve T cells.
Muthuswamy, R. et al.

Evaluating maturation and genetic modification of human dendritic cells in a new polyolefin cell culture bag system.
Macke, L. et al.

Efficient generation of clinical-grade genetically modified dendritic cells for presentation of multiple tumor-associated proteins.
Garritsen, H.S. et al.

Generation of a dendritic cell-based vaccine in chronic lymphocytic leukaemia using CliniMACS platform for large-scale production.
Adamson L. et al.

Clinical-grade manufacturing of autologous mature RNA-electroporated dendritic cells from CD14+ monocytes of acute myeloid leukemia patients in remission
Van Tendeloo, V.
CliniMACS Newsletter (2008)

Development of a dendritic cell-based vaccine for chronic lymphocytic leukemia.
Palma, M. et al.

Generation of DC-based vaccine for therapy of B-CLL patients. Comparison of two methods for enriching monocytic precursors.
Kokhaei, P. et al.

Isolation and generation of clinical-grade dendritic cells using the CliniMACS system.
Campbell, J.D. et al.

Generation of clinical-grade monocyte-derived dendritic cells using the CliniMACS system.
Putz, T. et al.

Clinical-grade manufacturing of DC from CD14+ precursors: experience from phase I clinical trials in CML and malignant melanoma.
Dietz, A.B. et al.

Efficacy of dendritic cell generation for clinical use: recovery and purity of monocytes and mature dendritic cells after immunomagnetic sorting or adherence selection of CD14+ starting populations.
Meyer-Wentrup, F. and Burchdach, S.
Large-scale immunomagnetic selection of CD14+ monocytes to generate dendritic cells for cancer immunotherapy: a phase I study.
Babatz, J. et al.

Clinical-scale generation of dendritic cells in a closed system.
Sorg, R. et al.

Generation of dendritic cells from CD14+ monocytes positively selected by immunomagnetic adsorption for multiple myeloma patients enrolled in a clinical trial of anti-idiotype vaccination.
Motta, M.R. et al.

Monocyte enrichment from leukapheresis products for the generation of DCs by plastic adherence, or by positive or negative selection
Felzmann, T. et al.

Optimizing preparation of normal dendritic cells and bcr-abl+ mature dendritic cells derived from immunomagnetically purified CD14+ cells
Dietz, A.B. et al.

MoDCs - in clinical trials
Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for metastatic cancer patients
Alfaro, C. et al.

Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination
Van Tendeloo V. et al.

Clinical and immunological effects of intranodal autologous tumor lysate- DC vaccine with Aldesleukin (IL-2) and IFN-a 2a therapy in metastatic renal cell carcinoma patients.
Schwaab, T. et al.

Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial.
Van Driessche, A. et al.

Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study.
Di Nicola, M. et al.

Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides.
Curti, A. et al.

Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells.
Babatz, J. et al.

Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a phase I clinical trial.
Fuessel, S. et al.

Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide.
Höltl, L. et al.

Intratumoral Injection of Dendritic Cells Engineered to Secrete Interleukin-12 by Recombinant Adenovirus in Patients With Metastatic Gastrointestinal Carcinomas.
Mazzolini, G. et al.
Generation of dendritic cells from positively selected CD14+ monocytes for antitumor immunotherapy.
Curti, A. et al.

Mature myeloid dendritic cells for clinical use prepared from CD14+ cells isolated by immunomagnetic adsorption.
Padley, D.J. et al.

MoDCs – for in vitro stimulation

Allogeneic HLA-A*02-restricted WT1-specific T cells from mismatched donors are highly reactive but show off-target promiscuity.
Falkenburg, W.J.J. et al.

Prophylactic transfer of BCR-ABL-, PR1-, and WT1-reactive donor T cells after T-cell-depleted allogeneic hematopoietic cell transplantation in patients with chronic myeloid leukemia.
Bornhäuser, M. et al.
Miltenyi Biotec provides products and services worldwide. Visit www.miltenyibiotec.com/local to find your nearest Miltenyi Biotec contact. The CliniMACS® System components: Reagents, Tubing Sets, Instruments, and PBS/EDTA Buffer are manufactured and controlled under an ISO 13485 certified quality system. In Europe, the CliniMACS System components are available as CE-marked medical devices. In the USA, the CliniMACS System components including the CliniMACS Reagents are available for use only under an approved Investigational New Drug (IND) application or Investigational Device Exemption (IDE). CliniMACS® MicroBeads are for research use only and not for use in humans. MACS and CliniMACS are registered trademarks or trademarks of Miltenyi Biotec GmbH. Copyright © 2011 Miltenyi Biotec GmbH. All rights reserved.